Arithmetic multivariate Descartes' rule

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Arithmetic Multivariate Descartes' Rule Arithmetic Multivariate Descartes' Rule

Let L be any number field or p-adic field and consider F := (f1, . . . , fk) where fi∈L[x ±1 1 , . . . , x ±1 n ]\{0} for all i and there are exactlym distinct exponent vectors appearing in f1, . . . , fk. We prove that F has no more than 1+ ( σm(m− 1)2n2 logm )n geometrically isolated roots in Ln, where σ is an explicit and effectively computable constant depending only on L. This gives a sign...

متن کامل

Arithmetic Multivariate Descartes ’ Rule

Let L be any number field or p-adic field and consider F := (f1, . . . , fk) where fi∈L[x 1 , . . . , x±1 n ]\{0} for all i and there are exactly μ distinct exponent vectors appearing in f1, . . . , fk. We prove that F has no more than 1+ ( ln(μ− n+ 1)min{1,n−1}(μ− n)2 log μ )n geometrically isolated roots in Ln, where l is an explicit and effectively computable constant depending only on L. Th...

متن کامل

Arithmetic Multivariate Descartes ’ Rule 1

Let L be any number field or p-adic field and consider F := (f1, . . . , fk) where f1, . . . , fk ∈ L[x1, . . . , xn] and no more than μ distinct exponent vectors occur in the monomial term expansions of the fi. We prove that F has no more than 1 + ( Cn(μ− n)3 log(μ− n) )n geometrically isolated roots in Ln, where C is an explicit and effectively computable constant depending only on L. This gi...

متن کامل

Descartes' Rule of Signs

In this work, we formally proved Descartes Rule of Signs, which relates the number of positive real roots of a polynomial with the number of sign changes in its coefficient list. Our proof follows the simple inductive proof given by Arthan [1], which was also used by John Harrison in his HOL Light formalisation. We proved most of the lemmas for arbitrary linearly-ordered integrity domains (e.g....

متن کامل

The Descartes Rule of Sweeps and the Descartes Signature

The Descartes Rule of Signs, which establishes a bound on the number of positive roots of a polynomial with real coefficients, is extended to polynomials with complex coefficients. The extension is modified to bound the number of complex roots in a given direction on the complex plane, giving rise to the Descartes Signature of a polynomial. The search for the roots of a polynomial is sometimes ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: American Journal of Mathematics

سال: 2004

ISSN: 1080-6377

DOI: 10.1353/ajm.2004.0005